Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Dichlorido[3-methoxymethyl-4-phenyl-5-(2-pyridyl)-4H-1.2.4-triazole- $\kappa^2 N^1 N^5$ ]copper(II)

#### Shouping Cao, Zuoxiang Wang\* and Xiaofei Jin

School of Chemistry and Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: wangzx0908@yahoo.com.cn

Received 17 July 2011; accepted 14 August 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.029; wR factor = 0.068; data-to-parameter ratio = 14.5.

In the title complex,  $[CuCl_2(C_{15}H_{14}N_4O)],$  the  $Cu^{\rm II}$  atom possesses a highly distorted square-planar geometry with N-Cu-N and Cl-Cu-Cl angles of 79.86 (8) and 98.65 (3) $^{\circ}$ , respectively, while the Cl-Cu-N angles fall into two distinct groups with values of 95.26 (6), 98.75 (6), 150.56 (6) and 152.04 (6)°. The pyridyl ring is twisted by 9.4 (2)° with respect to the triazole ring, which is oriented at approximately right angles  $[84.66 (8)^{\circ}]$  with respect to the phenyl ring.

### **Related literature**

For general background on the coordination chemistry of 1,2,4-triazoles, see: Klingele & Brooker (2003); Rubio et al. (2011). For the biological activity of triazoles, see: Isloor et al. (2009). For a related structure, see: Ren et al. (2006).



### **Experimental**

#### Crystal data

| $[CuCl_2(C_{15}H_{14}N_4O)]$ | V = 3357.9 (4) Å <sup>3</sup>  |
|------------------------------|--------------------------------|
| $M_r = 400.74$               | Z = 8                          |
| Orthorhombic, Pbca           | Mo $K\alpha$ radiation         |
| a = 16.6512 (11)  Å          | $\mu = 1.63 \text{ mm}^{-1}$   |
| b = 11.2056 (7) Å            | T = 296  K                     |
| c = 17.9966 (11) Å           | $0.15 \times 0.13 \times 0.12$ |
|                              |                                |

#### Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2003)  $T_{\min} = 0.792, T_{\max} = 0.829$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$  $wR(F^2) = 0.068$ S = 1.003043 reflections

Z = 8Mo  $K\alpha$  radiation  $\mu = 1.63 \text{ mm}^-$ T = 296 K $0.15 \times 0.13 \times 0.12 \text{ mm}$ 

22829 measured reflections 3043 independent reflections 2288 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.052$ 

210 parameters H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$ 

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We are grateful to Jingye Pharmochemical Pilot Plant for financial assistance though project 8507040052.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2432).

#### References

Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787
- Klingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev. 241, 119-132.
- Ren, X. M., Ni, Z. P., Noro, S., Akutagawa, T., Nishihara, S., Nakamura, T., Sui, Y. X. & Song, Y. (2006). Cryst. Growth Des. 6, 2530-2537.
- Rubio, M., Hernández, R., Nogales, A., Roig, A. & López, D. (2011). Eur. Polym I 47 52-60
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2011). E67, m1273 [doi:10.1107/S160053681103296X]

# Dichlorido[3-methoxymethyl-4-phenyl-5-(2-pyridyl)-4*H*-1,2,4-triazole- $\kappa^2 N^1$ , $N^5$ ]copper(II)

## S. Cao, Z. Wang and X. Jin

### Comment

The coordination chemistry of 1,2,4-triazoles as ligands has been widely studied (Klingele & Brooker 2003; Rubio *et al.*, 2011). Some 1,2,4-triazole compounds show biological activities (Isloor *et al.*, 2009). We report here the crystal structure analysis of the title compound.

In the title complex (Fig. 1), copper(II) atom is coordinated by two N atoms of a 3-(methoxymethyl)-4-phenyl-5-(2-pyridyl)-4*H*-1,2,4-triazole and two chloride anion atoms, and exhibits a highly distorted square-planar geometry (Ren *et al.*, 2006) with N1–Cu1–N4 and Cl1–Cu1–Cl2 angles 79.86 (8) and 98.65 (3)°, respectively, while the Cl–Cu–N angles fall in two distinct categories with values 95.26 (6), 98.75 (6), 150.56 (6) and 152.04 (6)°. The pyridyl ring (N4/C3–C7) is twisted by 9.4 (2)° with respect to the triazole ring. The phenyl ring is oriented at approximately right angles (84.66 (8)°) with respect to the triazole ring.

## Experimental

To a warm solution of 3-methoxymethyl-4-phenyl-5-(2-pyridyl)-4H-1,2,4-triazole (0.532 g, 2 mmol) in ethanol (20 ml), CuCl<sub>2</sub>.2H<sub>2</sub>O (0.340 g, 2 mmol) was added. The filtrate was left to stand at room temperature for several days. The title compound crystallized as a green product which was collected and a single crystal suitable for X-ray diffraction was selected.

## Refinement

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the parent atoms with C—H = 0.93, 0.96 and 0.97 Å, for aryl, methyl and methylene type H-atoms, respectively, with Uiso~(H) = 1.2 or 1.5 times U~eq~(C).

**Figures** 



Fig. 1. The molecular structure of the title compound with the atomic labels; displacement ellipsoids are shown at 30% probability level.

## $Dichlorido [3-methoxymethyl-4-phenyl-5-(2-pyridyl)-4H-1,2,4-triazole-\kappa^2 N^1, N^5] copper (II)$

### Crystal data

| $[CuCl_2(C_{15}H_{14}N_4O)]$ | F(000) = 1624                                  |
|------------------------------|------------------------------------------------|
| $M_r = 400.74$               | $D_{\rm x} = 1.585 {\rm ~Mg} {\rm ~m}^{-3}$    |
| Orthorhombic, Pbca           | Mo K $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ac 2ab      | Cell parameters from 9999 reflections          |
| a = 16.6512 (11)  Å          | $\theta = 2.5 - 23.3^{\circ}$                  |
| b = 11.2056 (7)  Å           | $\mu = 1.63 \text{ mm}^{-1}$                   |
| c = 17.9966 (11)  Å          | T = 296  K                                     |
| $V = 3357.9 (4) \text{ Å}^3$ | Plate, green                                   |
| Z = 8                        | $0.15\times0.13\times0.12~mm$                  |
|                              |                                                |

#### Data collection

| Bruker APEXII CCD<br>diffractometer                                     | 3043 independent reflections                                              |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                                | 2288 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                                | $R_{\rm int} = 0.052$                                                     |
| $\omega$ scans                                                          | $\theta_{\text{max}} = 25.3^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$ |
| Absorption correction: multi-scan<br>( <i>SADABS</i> ; Sheldrick, 2003) | $h = -19 \rightarrow 19$                                                  |
| $T_{\min} = 0.792, \ T_{\max} = 0.829$                                  | $k = -13 \rightarrow 13$                                                  |
| 22829 measured reflections                                              | $l = -21 \rightarrow 20$                                                  |

### Refinement

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                                                                                                     |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                                                                                                 |
| $R[F^2 > 2\sigma(F^2)] = 0.029$                        | H-atom parameters constrained                                                                                                                            |
| $wR(F^2) = 0.068$                                      | $w = 1/[\sigma^2(F_o^2) + (0.0297P)^2 + 1.3987P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                                                                      |
| <i>S</i> = 1.00                                        | $(\Delta/\sigma)_{\rm max} = 0.003$                                                                                                                      |
| 3043 reflections                                       | $\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$                                                                                                    |
| 210 parameters                                         | $\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$                                                                                                   |
| 0 restraints                                           | Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008),<br>Fc <sup>*</sup> =kFc[1+0.001xFc <sup>2</sup> $\lambda^3$ /sin(2 $\theta$ )] <sup>-1/4</sup> |
| Primary atom site location: structure-invariant direct |                                                                                                                                                          |

Primary atom site location: structure-invariant direct Extinction coefficient: 0.00051 (11)

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

|      | x             | У             | Ζ             | $U_{\rm iso}*/U_{\rm eq}$ |
|------|---------------|---------------|---------------|---------------------------|
| Cu1  | 0.050004 (18) | 0.14725 (3)   | 0.291744 (16) | 0.03113 (11)              |
| Cl1  | -0.00195 (5)  | 0.07124 (6)   | 0.39349 (4)   | 0.0465 (2)                |
| C12  | 0.04038 (5)   | 0.33855 (6)   | 0.32076 (4)   | 0.0497 (2)                |
| N1   | 0.11465 (12)  | 0.00815 (17)  | 0.25962 (11)  | 0.0307 (5)                |
| N2   | 0.15782 (13)  | -0.08048 (19) | 0.29457 (12)  | 0.0363 (5)                |
| N3   | 0.17649 (12)  | -0.09025 (18) | 0.17273 (11)  | 0.0320 (5)                |
| N4   | 0.05062 (13)  | 0.17404 (17)  | 0.17923 (12)  | 0.0315 (5)                |
| C1   | 0.19497 (15)  | -0.1381 (2)   | 0.24098 (15)  | 0.0360 (6)                |
| 01   | 0.22057 (13)  | -0.34971 (18) | 0.22443 (12)  | 0.0537 (6)                |
| C2   | 0.12619 (14)  | 0.0011 (2)    | 0.18771 (13)  | 0.0288 (6)                |
| C3   | 0.08684 (14)  | 0.0871 (2)    | 0.13891 (14)  | 0.0298 (6)                |
| C4   | 0.08315 (17)  | 0.0841 (2)    | 0.06246 (14)  | 0.0409 (7)                |
| H4   | 0.1081        | 0.0233        | 0.0359        | 0.049*                    |
| C5   | 0.04137 (18)  | 0.1740 (3)    | 0.02592 (16)  | 0.0471 (8)                |
| H5   | 0.0372        | 0.1734        | -0.0256       | 0.057*                    |
| C6   | 0.00641 (18)  | 0.2635 (3)    | 0.06654 (16)  | 0.0433 (7)                |
| H6   | -0.0209       | 0.3251        | 0.0429        | 0.052*                    |
| C7   | 0.01245 (16)  | 0.2607 (2)    | 0.14301 (15)  | 0.0390 (7)                |
| H7   | -0.0111       | 0.3218        | 0.1703        | 0.047*                    |
| C8   | 0.21233 (15)  | -0.1229 (2)   | 0.10221 (14)  | 0.0336 (6)                |
| C9   | 0.27888 (17)  | -0.0607 (3)   | 0.07879 (16)  | 0.0484 (8)                |
| H9   | 0.2997        | 0.0011        | 0.1074        | 0.058*                    |
| C10  | 0.31432 (19)  | -0.0914 (3)   | 0.01219 (18)  | 0.0623 (9)                |
| H10  | 0.3596        | -0.0506       | -0.0043       | 0.075*                    |
| C11  | 0.2831 (2)    | -0.1813 (4)   | -0.02921 (19) | 0.0651 (10)               |
| H11  | 0.3071        | -0.2013       | -0.0742       | 0.078*                    |
| C12  | 0.2167 (2)    | -0.2431 (3)   | -0.00585 (18) | 0.0623 (10)               |
| H12  | 0.1961        | -0.3045       | -0.0350       | 0.075*                    |
| C13  | 0.17992 (18)  | -0.2144 (3)   | 0.06103 (16)  | 0.0473 (7)                |
| H13  | 0.1349        | -0.2558       | 0.0775        | 0.057*                    |
| C14  | 0.25175 (18)  | -0.2404 (3)   | 0.25097 (17)  | 0.0472 (7)                |
| H14A | 0.3014        | -0.2228       | 0.2250        | 0.057*                    |
| H14B | 0.2643        | -0.2486       | 0.3034        | 0.057*                    |
| C15  | 0.1611 (2)    | -0.3976 (3)   | 0.2710 (2)    | 0.0763 (11)               |
| H15A | 0.1833        | -0.4112       | 0.3195        | 0.114*                    |
| H15B | 0.1424        | -0.4718       | 0.2507        | 0.114*                    |
| H15C | 0.1171        | -0.3426       | 0.2746        | 0.114*                    |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# Atomic displacement parameters $(Å^2)$

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$      |
|-----|--------------|--------------|--------------|--------------|--------------|---------------|
| Cu1 | 0.03540 (19) | 0.03221 (18) | 0.02578 (18) | 0.00298 (15) | 0.00322 (14) | -0.00052 (13) |
| Cl1 | 0.0637 (5)   | 0.0446 (4)   | 0.0313 (4)   | -0.0037 (4)  | 0.0134 (3)   | 0.0013 (3)    |
| Cl2 | 0.0754 (5)   | 0.0342 (4)   | 0.0396 (4)   | 0.0099 (4)   | 0.0052 (4)   | -0.0038 (3)   |
| N1  | 0.0329 (12)  | 0.0315 (12)  | 0.0276 (12)  | 0.0032 (10)  | 0.0021 (9)   | 0.0020 (9)    |
| N2  | 0.0372 (12)  | 0.0378 (13)  | 0.0340 (12)  | 0.0046 (10)  | -0.0014 (10) | 0.0035 (10)   |
| N3  | 0.0321 (12)  | 0.0328 (12)  | 0.0309 (12)  | 0.0015 (10)  | 0.0033 (10)  | 0.0003 (10)   |
| N4  | 0.0355 (12)  | 0.0314 (12)  | 0.0275 (11)  | 0.0026 (10)  | 0.0021 (10)  | 0.0027 (9)    |
| C1  | 0.0340 (14)  | 0.0364 (15)  | 0.0377 (16)  | 0.0016 (13)  | 0.0009 (12)  | 0.0006 (13)   |
| 01  | 0.0589 (13)  | 0.0432 (12)  | 0.0591 (14)  | 0.0147 (11)  | 0.0039 (11)  | -0.0017 (11)  |
| C2  | 0.0276 (14)  | 0.0302 (14)  | 0.0286 (14)  | -0.0020 (11) | 0.0017 (11)  | -0.0014 (11)  |
| C3  | 0.0305 (14)  | 0.0300 (14)  | 0.0290 (14)  | -0.0034 (11) | 0.0018 (11)  | -0.0002 (11)  |
| C4  | 0.0520 (17)  | 0.0395 (16)  | 0.0310 (16)  | 0.0062 (14)  | 0.0013 (13)  | -0.0033 (13)  |
| C5  | 0.063 (2)    | 0.0525 (19)  | 0.0256 (15)  | 0.0009 (16)  | -0.0030 (14) | 0.0052 (13)   |
| C6  | 0.0492 (18)  | 0.0427 (17)  | 0.0381 (17)  | 0.0049 (14)  | -0.0037 (14) | 0.0105 (13)   |
| C7  | 0.0412 (16)  | 0.0374 (16)  | 0.0382 (16)  | 0.0048 (13)  | 0.0040 (13)  | 0.0040 (13)   |
| C8  | 0.0330 (14)  | 0.0370 (15)  | 0.0309 (15)  | 0.0083 (12)  | 0.0041 (12)  | -0.0035 (12)  |
| C9  | 0.0444 (17)  | 0.0537 (19)  | 0.0469 (18)  | -0.0072 (15) | 0.0098 (14)  | -0.0069 (15)  |
| C10 | 0.049 (2)    | 0.089 (3)    | 0.049 (2)    | -0.0019 (19) | 0.0160 (16)  | -0.0052 (19)  |
| C11 | 0.061 (2)    | 0.094 (3)    | 0.040 (2)    | 0.017 (2)    | 0.0122 (17)  | -0.0105 (19)  |
| C12 | 0.076 (3)    | 0.067 (2)    | 0.044 (2)    | 0.005 (2)    | -0.0070 (18) | -0.0258 (17)  |
| C13 | 0.0486 (18)  | 0.0480 (18)  | 0.0452 (19)  | -0.0026 (15) | 0.0009 (14)  | -0.0070 (15)  |
| C14 | 0.0394 (17)  | 0.0500 (19)  | 0.0521 (19)  | 0.0116 (15)  | -0.0024 (14) | 0.0048 (15)   |
| C15 | 0.065 (2)    | 0.062 (2)    | 0.102 (3)    | 0.000 (2)    | 0.017 (2)    | 0.007 (2)     |

## Geometric parameters (Å, °)

| Cu1—N1  | 1.981 (2)  | С5—Н5    | 0.9300    |
|---------|------------|----------|-----------|
| Cu1—N4  | 2.047 (2)  | C6—C7    | 1.380 (4) |
| Cu1—Cl1 | 2.1969 (7) | С6—Н6    | 0.9300    |
| Cu1—Cl2 | 2.2121 (7) | С7—Н7    | 0.9300    |
| N1—C2   | 1.311 (3)  | C8—C9    | 1.375 (4) |
| N1—N2   | 1.378 (3)  | C8—C13   | 1.376 (4) |
| N2—C1   | 1.315 (3)  | C9—C10   | 1.380 (4) |
| N3—C2   | 1.350 (3)  | С9—Н9    | 0.9300    |
| N3—C1   | 1.375 (3)  | C10—C11  | 1.356 (5) |
| N3—C8   | 1.449 (3)  | С10—Н10  | 0.9300    |
| N4—C7   | 1.331 (3)  | C11—C12  | 1.371 (5) |
| N4—C3   | 1.356 (3)  | C11—H11  | 0.9300    |
| C1—C14  | 1.496 (4)  | C12—C13  | 1.388 (4) |
| O1—C15  | 1.403 (4)  | C12—H12  | 0.9300    |
| O1—C14  | 1.414 (3)  | С13—Н13  | 0.9300    |
| C2—C3   | 1.459 (3)  | C14—H14A | 0.9700    |
| C3—C4   | 1.377 (3)  | C14—H14B | 0.9700    |
| C4—C5   | 1.390 (4)  | C15—H15A | 0.9600    |
| C4—H4   | 0.9300     | C15—H15B | 0.9600    |
|         |            |          |           |

| C5—C6       | 1.371 (4)   | C15—H15C      | 0.9600    |
|-------------|-------------|---------------|-----------|
| N1—Cu1—N4   | 79.86 (8)   | С7—С6—Н6      | 120.5     |
| N1—Cu1—Cl1  | 98.75 (6)   | N4—C7—C6      | 122.7 (3) |
| N4—Cu1—Cl1  | 152.04 (6)  | N4—C7—H7      | 118.7     |
| N1—Cu1—Cl2  | 150.56 (6)  | С6—С7—Н7      | 118.7     |
| N4—Cu1—Cl2  | 95.26 (6)   | C9—C8—C13     | 121.9 (3) |
| Cl1—Cu1—Cl2 | 98.65 (3)   | C9—C8—N3      | 118.2 (2) |
| C2—N1—N2    | 109.3 (2)   | C13—C8—N3     | 119.9 (2) |
| C2—N1—Cu1   | 114.52 (16) | C8—C9—C10     | 119.0 (3) |
| N2—N1—Cu1   | 135.85 (16) | С8—С9—Н9      | 120.5     |
| C1—N2—N1    | 105.3 (2)   | С10—С9—Н9     | 120.5     |
| C2—N3—C1    | 104.8 (2)   | C11—C10—C9    | 119.9 (3) |
| C2—N3—C8    | 128.4 (2)   | C11—C10—H10   | 120.0     |
| C1—N3—C8    | 126.3 (2)   | С9—С10—Н10    | 120.0     |
| C7—N4—C3    | 118.3 (2)   | C10-C11-C12   | 121.1 (3) |
| C7—N4—Cu1   | 126.09 (18) | C10-C11-H11   | 119.5     |
| C3—N4—Cu1   | 115.22 (16) | C12—C11—H11   | 119.5     |
| N2-C1-N3    | 111.0 (2)   | C11—C12—C13   | 120.3 (3) |
| N2-C1-C14   | 125.8 (2)   | C11—C12—H12   | 119.9     |
| N3—C1—C14   | 123.2 (2)   | C13—C12—H12   | 119.9     |
| C15—O1—C14  | 112.8 (3)   | C8—C13—C12    | 117.8 (3) |
| N1—C2—N3    | 109.5 (2)   | C8—C13—H13    | 121.1     |
| N1—C2—C3    | 119.3 (2)   | C12—C13—H13   | 121.1     |
| N3—C2—C3    | 131.2 (2)   | O1-C14-C1     | 113.0 (2) |
| N4—C3—C4    | 122.1 (2)   | O1-C14-H14A   | 109.0     |
| N4—C3—C2    | 110.6 (2)   | C1C14H14A     | 109.0     |
| C4—C3—C2    | 127.2 (2)   | O1-C14-H14B   | 109.0     |
| C3—C4—C5    | 118.5 (3)   | C1-C14-H14B   | 109.0     |
| C3—C4—H4    | 120.7       | H14A—C14—H14B | 107.8     |
| C5—C4—H4    | 120.7       | O1-C15-H15A   | 109.5     |
| C6—C5—C4    | 119.4 (3)   | O1—C15—H15B   | 109.5     |
| С6—С5—Н5    | 120.3       | H15A—C15—H15B | 109.5     |
| С4—С5—Н5    | 120.3       | O1—C15—H15C   | 109.5     |
| C5—C6—C7    | 118.9 (3)   | H15A—C15—H15C | 109.5     |
| С5—С6—Н6    | 120.5       | H15B—C15—H15C | 109.5     |



Fig. 1